压缩映像原理

一、压缩映像原理

设数列 xn{x_n} 满足下列两种压缩性条件之一:

(1)xn+1xntxnxn1|x_{n+1}-x_n|\leqslant t|x_{n}-x_{n-1}|

(2)xn+1AtxnA|x_{n+1}-A|\leqslant t|x_{n}-A|AA 是数列极限值)

其中 t(0,1),n>1t\in(0,1),n>1,则数列 xn{x_n} 必定收敛

证明:我们用柯西收敛准则来证明该原理的第一条(第二条的证明是类似的)

对于任意的 ε>0\varepsilon >0,若 xn+1xntxnxn1|x_{n+1}-x_n|\leqslant t|x_{n}-x_{n-1}|,则有

xn+pxn<txn+p1xn1<...<tn1xp+1x1<ε|x_{n+p}-x_n|<t|x_{n+p-1}-x_{n-1}|<...<t^{n-1}|x_{p+1}-x_{1}|<\varepsilon

N=[logtεxp+1x1]+2N=\left [ log_t \frac{\varepsilon}{|x_{p+1}-x_1|}\right ]+2,当 n>Nn>N 时,恒有

xn+pxn<ε|x_{n+p}-x_n|<\varepsilon

根据柯西收敛准则,该数列收敛


二、练习题目

已知 x1=a(a>0)xn+1=xn+2xn+1x_1 =a(a>0),x_{n+1}=\frac{x_n+2}{x_n+1},证明:数列 {xn}\{x_n\} 收敛

证明:由于

xn+1=xn+2xn+1=1+1xn+1x_{n+1}=\frac{x_n+2}{x_n+1}=1+\frac{1}{x_n+1}

x1>0x_1>0,故 xn>1x_n>1,于是有:

xn+1xn=xn+2xn+1xn1+2xn1+1=xnxn1(xn+1)(xn1+1)<14xnxn1\begin{aligned}\left|x_{n+1}-x_{n}\right| &=\left|\frac{x_{n}+2}{x_{n}+1}-\frac{x_{n-1}+2}{x_{n-1}+1}\right| \\ &=\frac{\left|x_{n}-x_{n-1}\right|}{\left(x_{n}+1\right)\left(x_{n-1}+1\right)} \\ &<\frac{1}{4}\left|x_{n}-x_{n-1}\right| \end{aligned}

由压缩映像原理可知数列 xn{x_n} 收敛