Lifting The Exponent

The "lifting the exponent" (LTE) lemma is a useful one about the largest power of a prime dividing a difference or sum of n^{th} powers. Here are some sample problems whose solutions use the lemma.

1. Let n be a squarefree integer. Show that there is no pair of coprime positive integers (x,y) such that

$$(x+y)^3|(x^n+y^n).$$

- 2. Show that 2 is a primitive root mod 3^k for all positive k.
- 3. Find all solutions in positive integers to $3^n = x^k + y^k$, where gcd(x, y) = 1, $k \ge 2$.
- 4. Suppose *a* and *b* are positive real numbers such that a b, $a^2 b^2$, $a^3 b^3$, ... are all positive integers. Show that *a* and *b* must be positive integers.

Contents

LTE Lemma Statement
Solution to Problem 1
Solution to Problem 2
Solution to Problem 3
Solution to Problem 4
Proof of LTE

LTE Lemma Statement

DEFINITION

Let p be a prime and n a nonzero integer. Then we define $v_p(n)$ to be the exponent of p in the prime factorization of n. That is, $v_p(n) = k \Leftrightarrow p^k | n \text{ and } p^{k+1} \nmid n.$

THEOREM

Let p be a prime, x and y integers, n a positive integer, and suppose that p|(x - y) but $p \nmid x$ and $p \nmid y$. Then (1) if p is odd,

$$v_p(x^n-y^n)=v_p(x-y)+v_p(n);$$

(2) for p = 2 and even n,

$$v_2(x^n-y^n)=v_2(x-y)+v_2(n)+v_2(x+y)-1$$

Notice that if n is odd, we can substitute -y for y in (1) to obtain

$$v_p(x^n+y^n)=v_p(x+y)+v_p(n)$$

if p|(x+y).

EXAMPLE

Use the LTE lemma to find the largest power of 3 dividing $5^{18}-2^{18}. \label{eq:stable}$

By LTE,

$$v_3(5^{18}-2^{18})=v_3(5-2)+v_3(18)=1+2=3$$

So the answer is 3^3 .

Without LTE, the problem can be solved by factoring

$$\begin{split} 5^{18}-2^{18} &= \left(5^9-2^9\right) \left(5^9+2^9\right) \\ &= \left(5^3-2^3\right) \left(2^6+2^35^3+5^6\right) \left(5^9+2^9\right) \\ &= \left(5-2\right) \left(2^2+(2)(5)+5^2\right) \left(2^6+2^35^3+5^6\right) \left(5^9+2^9\right). \end{split}$$

The first factor has one 3 and the fourth factor has no 3s, and some careful mod-9 analysis shows that the second and third factors are divisible by 3 but not 9, so the total number of factors of 3 is 3. This is quite a bit more complicated (but note that it also indicates how an inductive proof of LTE might proceed). \Box

This lemma gives a practical way to solve many problems involving the largest power of a prime that divides certain expressions. In particular, the solutions to the problems in the introduction all use LTE in an essential way.

As a warmup, here is a typical Diophantine equation that can be tackled using the LTE Lemma.

Find all positive integers x, y and positive prime numbers p such that	Submit your answer
$p^x-y^p=1.$	
Enter your answer as the sum $\sum (p_i + x_i + y_i),$ where the sum runs over the solutions	
(p, x, y) to the equation.	

Solution to Problem 1

Assume $(x + y)^3 | (x^n + y^n)$ with gcd(x, y) = 1. We will derive a contradiction.

First, suppose *n* is even. If there is an odd prime p|(x + y), then $x^n + y^n \equiv x^n + (-x)^n \equiv 2x^n \mod p$, so p|x, so p|y, contradiction. Since *x* and *y* are positive, the only possible way that there is no odd prime *p* dividing x + y is if x + y is a power of 2. In this case, *x* and *y* are both odd since they are coprime, so since *n* is even x^n and y^n are both 1 mod 8, so $v_2(x^n + y^n) = 1$, but $v_2((x + y)^3) \ge 3$, so again we get a contradiction.

Now suppose n is odd. If there is an odd prime p|(x+y), then $3v_p(x+y) \le v_p(x^n+y^n)$. Then LTE gives $3v_p(x+y) \le v_p(x^n+y^n) = v_p(x+y) + v_p(n) \le v_p(x+y) + 1$

since n is square-free. Simplifying, we get $v_p(x+y) \leq \frac{1}{2}$, which is impossible since p|(x+y).

As above, the only remaining case is when x + y is a power of 2. But in this case, $v_2(x^n + y^n) = v_2(x + y)$ if n is odd, because x and y are odd and the expansion of

$$rac{x^n+y^n}{x+y} = x^{n-1} - x^{n-2}y + \dots - xy^{n-2} + y^{n-1}$$

has an odd number of terms, all of which are odd. So it is impossible for $(x + y)^3$ to divide $x^n + y^n$, since the power of 2 on the left exceeds the power of 2 on the right. \Box

Solution to Problem 2

We seek the smallest positive n such that $2^n \equiv 1 \mod 3^k$. If $3^k | (2^n - 1)$, first note that $2^n \equiv 1 \mod 3$, so n is even. Write n = 2m. So $3^k | (4^m - 1)$. Now LTE applies:

$$k \leq v_3(4^m-1^m) = v_3(4-1) + v_3(m) = 1 + v_3(m).$$

So $v_3(m) \ge k-1$. The smallest possible such m is 3^{k-1} , so the smallest possible n is $2 \cdot 3^{k-1} = \phi(3^k)$, where ϕ is Euler's totient function. This proves the claim. \Box

Here is a similar problem to try:

TRY IT YOURSELF

 $3^x = 2^x y + 1$

Submit your answer

How many pairs of positive integers (x, y) satisfy the equation above?

Solution to Problem 3

If one of x or y is divisible by 3, then they both are, which is a contradiction. So neither is. If k is even, then x^k and y^k are both 1 mod 3, so $x^k + y^k$ is not divisible by any power of 3.

Now suppose k is odd. If n = 0, then $x^k + y^k = 1$, and there are no solutions to this in positive integers, so we can exclude this case. Since $n \ge 1, 3|(x + y)$. Apply LTE:

$$n=v_3(x^k+y^k)=v_3(x+y)+v_3(k).$$

Then

$$x^k+y^k=3^n=3^{v_3(x+y)}3^{v_3(k)}=(x+y)k.$$

The point is that the left side is usually much bigger than the right side, so the result will follow from some routine inequalities.

Suppose x > y without loss of generality. Then dividing through by x + y gives

$$x^{k-1}-x^{k-2}y+\dots-xy^{k-2}+y^{k-1}=k \ (x-y)ig(x^{k-2}+x^{k-4}y^2+\dots+xy^{k-3}ig)+y^{k-1}=k.$$

The left side is $\geq x^{k-2}$, so $x^{k-2} \leq k$. So $\ln(x) \leq \frac{\ln(k)}{k-2}$. Recall $k \geq 3, x \geq 2$. By calculus, the right side is decreasing for $k \geq 3$, so $\ln(x) \leq \ln(3)$, so $x \leq 3$. We already ruled out 3|x, so x = 2 and hence y = 1.

In that case $2^{k-2} > k$ already unless k = 3, 4, but k is odd so k = 3. It's easy to check that x = 2, y = 1, k = 3 is a solution, as is x = 1, y = 2, k = 3 if we relax the x > y assumption, and the above analysis has shown that these are the only ones. \Box

Solution to Problem 4

Since $a - b \in \mathbb{Z}$ and $a^2 - b^2 \in \mathbb{Z}$, $a + b = \frac{a^2 - b^2}{a - b} \in \mathbb{Q}$. But then $a = \frac{1}{2}(a - b) + \frac{1}{2}(a + b)$ and $b = \frac{1}{2}(a + b) - \frac{1}{2}(a - b)$ are rational numbers as well.

Now, write $a = \frac{x}{z}$ and $b = \frac{y}{z}$ as quotients of positive integers, with a common denominator. Choose *z* as small as possible. Then the conditions of the problem imply that

$$z^n | (x^n - y^n)$$
 for all n .

Suppose p is a prime dividing z. Note z|(x - y) so p|(x - y). If p|x then p|y as well, but that violates the choice of z: we could write $a = \frac{\frac{x}{p}}{\frac{z}{n}}$, $b = \frac{\frac{y}{p}}{\frac{z}{n}}$ to get a smaller common denominator.

So $p \nmid x, y$ and we are set up to apply LTE. If p is odd then

$$n\leq v_p(z^n)=v_p(x^n-y^n)=v_p(x-y)+v_p(n).$$

Taking p to both sides gives

$$p^n \leq (x-y)n
onumber \ p^n \leq (x-y)$$

but this is impossible since the left side goes to infinity as $n \to \infty$, and the right side is a constant independent of n.

If p = 2, we get

$$n \leq v_2(z^n) = v_2(x^n-y^n) = v_2(x-y) + v_2(n) + v_2(x+y) - 1,$$

so

$$rac{2^{n+1}}{n}\leq (x-y)(x+y)$$

and we get a similar contradiction.

The conclusion is that there is no prime p dividing z. So z=1 and a and b are both positive integers. \Box

Proof of LTE

Here is an outline of the proof for odd primes
$$p$$
; the proof for $p=2$ is similar. Suppose $p|(x-y),\,p
mid x,p
mid y.$

Step 0: If
$$p \nmid a$$
, then $v_p(x^a - y^a) = v_p(x - y)$.
To see this, write $\frac{x^a - y^a}{x - y} = x^{a-1} + x^{a-2}y + \dots + y^{a-1}$, and since $x \equiv y \mod p$ this becomes $x^{a-1} + x^{a-1} + \dots + x^{a-1} \equiv ax^{a-1} \pmod{p}$, which is nonzero since $p \nmid a$ and $p \nmid x$.

Step 1: Prove it for n = p.

In this case, $v_p(x^p - y^p) = v_p(x - y) + v_p(x^{p-1} + x^{p-2}y + \dots + y^{p-1})$, so the idea is to show that the latter term equals $v_p(p) = 1$.

To do this, write y = x + pk for some k, and expand as a polynomial in p, looking mod p^2 (throwing out terms with p^2 or higher). Eventually we get

$$egin{aligned} x^{p-1} + x^{p-2}y + \cdots + y^{p-1} &\equiv x^{p-1} + (x^{p-1} + pkx^{p-2}) + (x^{p-1} + 2pkx^{p-2}) \ &+ \cdots + ig(x^{p-1} + (p-1)pkx^{p-2}ig) \ &\equiv px^{p-1} + rac{p(p-1)}{2}pkx^{p-2} \ &\equiv px^{p-1} \pmod{p^2}. \end{aligned}$$

So it is divisible by p but not p^2 , as desired.

Step 2: Write $n = p^k a$, $a \nmid p$, and use the previous two steps repeatedly.

That is,

$$egin{aligned} &v_p(x^n-y^n) = v_pigg(igg(x^{p^k}igg)^a - igg(y^{p^k}igg)^aigg) \ &= v_pig(x^{p^k}-y^{p^k}igg) & ext{(Step 0)} \ &= v_pigg(ig(x^{p^{k-1}}ig)^p - ig(y^{p^{k-1}}ig)^pigg) \ &= v_pig(x^{p^{k-1}}-y^{p^{k-1}}ig)+1 & ext{(Step 1)} \end{aligned}$$

and iterating the last two lines (or using induction) eventually gives $v_p(x-y)+k$, which is $v_p(x-y)+v_p(n)$. $_\Box$

Cite as: Lifting The Exponent. Brilliant.org. Retrieved 11:56, August 8, 2018, from https://brilliant.org/wiki/lifting-the-exponent/