Lifting The Exponent

The "lifting the exponent" (LTE) lemma is a useful one about the largest power of a prime dividing a difference or sum of nth
powers. Here are some sample problems whose solutions use the lemma.
1. Let n be a squarefree integer. Show that there is no pair of coprime positive integers (m, y) such that
(z+9)°|(z" +y").
2. Show that 2 is a primitive root mod 3* for all positive k.
3. Find all solutions in positive integers to 3" = z* + 4, where ged(z,y) = 1, k > 2.
4. Suppose a and b are positive real numbers such that a — b, a? — bz,a?’ — b3, ... are all positive integers. Show that a

and b must be positive integers.
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LTE Lemma Statement

DEFINITION
Let p be a prime and n a nonzero integer. Then we define v, (n) to be the exponent of p in the prime factorization of n. That is,
vp(n) = k < p¥|n and p** { n.

THEOREM
Let p be a prime, = and y integers, n a positive integer, and suppose that p|(z — y) but p f  and p { y. Then
(1) if pis odd,

vp(a" —y") = v — ) + v, (n);
(2) for p = 2 and even n,

va (2" —y*) = v (2 — y) + v2(n) + v2(z +y) — L.

Notice that if n is odd, we can substitute —y for  in (1) to obtain
vy (2" +y") = vp(z +y) +vp(n)
if p|(z + v).

EXAMPLE

Use the LTE lemma to find the largest power of 3 dividing 518 _ 218

By LTE,
v3 (5" — 218) = w3(5 — 2) +v3(18) =1+2=3.

So the answer is 3°.

Without LTE, the problem can be solved by factoring
5].8 o 218 — (59 _ 29)(59 4 29)
= (5° —2%)(2° +2°5° +5%) (5° + 2°)
= (5-2)(2* + (2)(5) + 5%) (26 + 2°5° + 5%) (5 + 27).
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The first factor has one 3 and the fourth factor has no 3s, and some careful mod-9 analysis shows that the second and third
factors are divisible by 3 but not 9, so the total number of factors of 3 is 3. This is quite a bit more complicated (but note that it
also indicates how an inductive proof of LTE might proceed). o

This lemma gives a practical way to solve many problems involving the largest power of a prime that divides certain expressions. In
particular, the solutions to the problems in the introduction all use LTE in an essential way.

As a warmup, here is a typical Diophantine equation that can be tackled using the LTE Lemma.

TRY IT YOURSELF

Find all positive integers z, y and positive prime numbers p such that

" -y =1
Enter your answer as the sum Z(pl +x; + yl-), where the sum runs over the solutions
(p, z,y) to the equation.

Solution to Problem 1

Assume (z + y)3|(z™ + y™) with ged(z,y) = 1. We will derive a contradiction.

First, suppose n is even. If there is an odd prime p|(z + y), then 2" + 3" = 2" + (—z)" = 22" mod p, so p|z, so ply,
contradiction. Since z and y are positive, the only possible way that there is no odd prime p dividing  + y is if 4 y is a power of
2. In this case, z and y are both odd since they are coprime, so since n is even z™ and y" are both 1 mod 8, so vg (2" + ") = 1,
but v ((z + y)*) > 3, so again we get a contradiction.

Now suppose n is odd. If there is an odd prime p|(z + y), then 3v, (z + y) < v, (2™ + y™). Then LTE gives
3vp(z+y) <vp(@" +y") =vp(z +y) +vp(n) <vp(z+y)+1
since n is square-free. Simplifying, we get v, (z + y) < % which is impossible since p|(z + y).

As above, the only remaining case is when z + y is a power of 2. But in this case, v (2" + y") = v (x + y) if n is odd, because
z and y are odd and the expansion of
"ty P IR DY
z+y
has an odd number of terms, all of which are odd. So it is impossible for (a: + y)3 to divide ™ + y", since the power of 2 on the left
exceeds the power of 2 on the right. o

Solution to Problem 2

We seek the smallest positive n such that 2" = 1 mod 3k i 3k|(2” — 1), first note that 2" = 1 mod 3, so n is even. Write
n = 2m. So 3%|(4™ — 1). Now LTE applies:
E<wvg(4™ —1") =wv3(4 —1) +v3(m) =1+ v3(m).
So v3(m) > k — 1. The smallest possible such m is 3°71, so the smallest possible . is 2 - 3"~ = ¢(3*), where ¢ is Euler's
totient function. This proves the claim.

Here is a similar problem to try:

TRY IT YOURSELF

3 =2"y+1

How many pairs of positive integers (ac, y) satisfy the equation above?

Solution to Problem 3

If one of x or y is divisible by 3, then they both are, which is a contradiction. So neither is. If k is even, then z"¥ and y"c are both 1
mod 3, so z* + yk is not divisible by any power of 3.
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Now suppose k is odd. If n = 0, then zk + yk = 1, and there are no solutions to this in positive integers, so we can exclude this
case. Since n > 1, 3|(x + y). Apply LTE:
n=uv3(z" +4") = v3(z +y) +vs(k).
Then
zh 4 of =37 = 3uE@tgn®) — (3 4 )L
The point is that the left side is usually much bigger than the right side, so the result will follow from some routine inequalities.

Suppose x > y without loss of generality. Then dividing through by x 4 y gives

o PR SR R
(z—y) (@2 +2" "+ +2f )+ =k
The left side is > ¥ 2, so 22 < k. So In(z) < % Recall k > 3,z > 2. By calculus, the right side is decreasing for k > 3,

so In(z) < In(3), so < 3. We already ruled out 3|z, so z = 2 and hence y = 1.

In that case 2872 > k already unless k = 3, 4, but k is odd so k = 3. It's easy to check that z = 2,y = 1, k = 3 is a solution, as
isx =1,y =2,k = 3 if we relax the z > y assumption, and the above analysis has shown that these are the only ones.

Solution to Problem 4

Sincea—bEZanda2—b2EZ,a—*—b:%EQ.Butthena:%(a—b)+%(a+b)andb:%(a+b)—%(a—b)

are rational numbers as well.

Now, write a = % and b = % as quotients of positive integers, with a common denominator. Choose z as small as possible. Then
the conditions of the problem imply that

2| (2" — y") for all n.
Suppose p is a prime dividing z. Note z|(z — y) so p|(z — y). If p|z then p|y as well, but that violates the choice of z: we could

z ¥
. p p .
write @ = —— ,b = —— to get a smaller common denominator.
» »

So p J( z,y and we are set up to apply LTE. If p is odd then
n < up(2") = vp(a" —y") = vp(z —y) +vp(n).
Taking p to both sides gives

p" < (z—y)n
pn

— < —
= (z —y)

but this is impossible since the left side goes to infinity as n — 00, and the right side is a constant independent of n.

If p = 2, we get
n<v(Z") =uv(z" —y") =va(z —y) + va(n) + va(z +y) — 1,

SO
2n+1

- <(z—-y)(z+y)

and we get a similar contradiction.

The conclusion is that there is no prime p dividing z. So z = 1 and a and b are both positive integers. o

Proof of LTE

Here is an outline of the proof for odd primes p; the proof for p = 2 is similar. Suppose p|(z — y), pt z,p 1 y.

Step 0: If p { a, then v, (2 — y*) = v, (z — y).

To see this, write —— = 2% 1 + 2 2y + ... +9° ! andsince z = y mod p this becomes

ey
2tz 4 42 =az® ! (mod p),

which is nonzero since p { a and p { .

Step 1: Prove it forn = p.



In this case, v, (27 — ¥¥) = v,(z — y) + vp(2P ! + 2P 2y + .- - + yP 1), so the idea is to show that the latter term equals
vp(p) = 1.

To do this, write y = a + pk for some k, and expand as a polynomial in p, looking mod p2 (throwing out terms with p2 or higher).
Eventually we get
4P Py =2 (2P pha? ) + (2P + 2pkaP )
+-+ (2P + (p— 1)pka??)

-1
p(p2 ) pkmp72

=pz? ! (mod p?).

=pz? ! +

So it is divisible by p but not p2, as desired.

Step 2: Write n = pka, a J[p, and use the previous two steps repeatedly.

That is,
o —y") = (@) - (#)")
= v, (e — ¢ (Step 0)
= (@) - ("))
= (xpk_l - ypk_l) +1 (Step 1)

and iterating the last two lines (or using induction) eventually gives Up(w — y) + k, which is Up (a: — y) + vp(n). O
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